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The limiting form of inertial instability
in geophysical flows
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The instability of a rotating, stratified flow with arbitrary horizontal cross-stream shear
is studied, in the context of linear normal modes with along-stream wavenumber k

and vertical wavenumber m. A class of solutions are developed which are highly
localized in the horizontal cross-stream direction around a particular streamline. A
Rayleigh–Schrödinger perturbation analysis is performed, yielding asymptotic series
for the frequency and structure of these solutions in terms of k and m. The accuracy
of the approximation improves as the vertical wavenumber increases, and typically
also as the along-stream wavenumber decreases. This is shown to correspond to a
near-inertial limit, in which the solutions are localized around the global minimum
of fQ , where f is the Coriolis parameter and Q is the vertical component of the
absolute vorticity. The limiting solutions are near-inertial waves or inertial instabilities,
according to whether the minimum value of fQ is positive or negative.

We focus on the latter case, and investigate how the growth rate and structure
of the solutions changes with m and k. Moving away from the inertial limit, we
show that the growth rate always decreases, as the inertial balance is broken by a
stabilizing cross-stream pressure gradient. We argue that these solutions should be
described as non-symmetric inertial instabilities, even though their spatial structure is
quite different to that of the symmetric inertial instabilities obtained when k is equal
to zero.

We use the analytical results to predict the growth rates and phase speeds for the
inertial instability of some simple shear flows. By comparing with results obtained
numerically, it is shown that accurate predictions are obtained by using the first two
or three terms of the perturbation expansion, even for relatively small values of the
vertical wavenumber. Limiting expressions for the growth rate and phase speed are
given explicitly for non-zero k, for both a hyperbolic-tangent velocity profile on an
f -plane, and a uniform shear flow on an equatorial β-plane.

1. Introduction
An important problem in geophysical fluid dynamics is determining the stability

of an inviscid flow with horizontal shear. Here we consider the linear stability of a
steady parallel flow, arbitrarily sheared in the horizontal cross-stream direction, to
three-dimensional disturbances, in the presence of background rotation and a vertical
density stratification. The configuration is illustrated in figure 1. We study the relatively
simple case in which the background stratification is uniform, so that the homegeneity
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Figure 1. Configuration of the background flow.

in both the along-stream and vertical directions allows normal-mode disturbances
with along-stream wavenumber k and vertical wavenumber m to be found. The
mathematical formulation can then be reduced to a one-dimensional eigenvalue
problem for the cross-stream structure and a complex frequency ω. Typically there
are several families for ω(k, m), each containing a discrete or continuous spectrum
of eigenvalues, corresponding to diverse motions such as Rossby waves and inertia–
gravity waves. Despite the idealized nature of the formulation, results from this
approach remain an important aid to understanding motions in the atmosphere and
ocean.

When k = 0, the eigenvalue problem is relatively simple, being governed by a
Schrödinger equation with potential function fQ, where f is the Coriolis parameter
and Q is the vertical component of the absolute vorticity. Our analysis is based on
the observation that solutions exist which become highly localized in the cross-stream
direction as |m| → ∞, on a length scale proportional to |m|−1/2. This scale separation
between disturbance and basic state proves to be enough to determine almost trivially
the first two terms of asymptotic series for the disturbance structure and ω, using
a Rayleigh–Schrödinger perturbation analysis. These solutions, which we refer to
as symmetric, describe an inertial limit: that is, solutions for which the horizontal
pressure gradient terms are negligible. Although this kind of mathematical reduction
has been exploited for unstratified flows (Bayly 1988; Leblanc & Cambon 1997; Sipp
& Jacquin 2000), it seems to have attracted only sporadic attention for stratified
flows (e.g. Llewellyn Smith 1999, Appendix B). However, it simply corresponds to
the scenario described by a well-known heuristic ‘pressureless’ parcel argument (e.g.
Holton 1992). We obtain near-inertial waves when fQ > 0 everywhere, which are well
studied in the context of upper ocean dynamics, often at small Rossby number (e.g.
Kunze 1985). In contrast, when fQ < 0 somewhere in the flow (which requires Rossby
numbers of order unity), we obtain inertial instabilities, which are often referred to as
centrifugal instabilities. Whilst sufficiently strong shears could lead to such instabilities
in the extratropics (e.g. Potylitsin & Peltier 1998; Shen & Evans 2002), they are more
likely to occur near the equator, where they are active in both the atmosphere (e.g.
Hayashi, Shiotani & Gille 1998; Knox 2003 and references therein) and ocean (e.g.
Richards & Edwards 2003; d’Orgeville et al. 2004).

When k �= 0, the complexity of the eigenvalue problem means that little can be said
analytically about the stability of an arbitrary shear flow to fully three-dimensional
disturbances. This reflects an underlying physical complexity, since as k and m vary
across all possible values, we encounter solutions ranging from barotropic instabilities



Limiting form of inertial instability in geophysical flows 117

(or Rossby waves) with vertical structure, to inertial instabilities (or inertia–gravity
waves) with along-stream structure. Classification of such solutions can be difficult
(e.g. Taniguchi & Ishiwatari 2006). Any simplification to the mathematics, or to
the underlying physics, is desirable. Here we show how a Rayleigh–Schrödinger
perturbation analysis can be applied when k �= 0, again almost trivially leading to
solutions localized upon a length scale ∝ |m|−1/2 as |m| → ∞. These k �= 0 solutions,
which we refer to as non-symmetric, smoothly connect to the symmetric near-inertial
solutions obtained as k → 0 and |m| → ∞, and can thus be unambiguously described
as their extension to finite k. We shall focus on flows for which fQ < 0 somewhere, in
which case the solutions are non-symmetric inertial instabilities. This approach has
been used by Clark & Haynes (1996) to examine the instability of a uniform shear
flow on the equatorial β-plane, but here we extend it to quite arbitrary shear flows
and background rotation. There are no a priori restrictions on k, and few on the
cross-stream shear of the basic flow, so we are able to investigate fully the effects of
along-stream asymmetries and non-uniform shear. The results obtained are similar in
nature to those of Billant & Gallaire (2005), who used a WKB analysis to examine
the stability of flows with circular symmetry.

Our approach is as follows. After specifying the governing equations, we introduce
the asymptotic method in § 2, where it is applied to the relatively simple case of
symmetric solutions (k = 0). The main results are expressions for the frequency and
cross-stream structure of the solutions as power series in |m|−1, valid as |m| → ∞.
The approach is generalized to non-symmetric solutions (k �= 0) in § 3. We then
make two detailed comparisons of the theory with numerically determined solutions:
the instability of a hyperbolic-tangent velocity profile on an f -plane, in § 4, and the
instability of a uniform shear flow on an equatorial β-plane, in § 5. The results are
discussed in § 6.

1.1. The governing equations

Using a set of Cartesian coordinates, with horizontal along-stream coordinate x

and cross-stream coordinate y, and corresponding velocity components u and v, we
consider a basic flow u = U (y) (see figure 1). We suppose that the fluid has constant
buoyancy frequency N , and that the hydrostatic and traditional approximations are
valid (some comments regarding other cases are given in § 6.1). Then we model the
evolution of linear, normal mode disturbances to the flow with a vertical wavenumber
m via

Dũ − Qṽ = −∂φ̃

∂x
, Dṽ + f ũ = −∂φ̃

∂y
, Dφ̃ +

N2

m2

(
∂ũ

∂x
+

∂ṽ

∂y

)
= 0. (1.1a–c)

Here D = ∂/∂t + U (y)∂/∂x, the Coriolis parameter f is an arbitrary function of y,
Q(y) = f − dU/dy, and the disturbances take the form

(ũ, ṽ, φ̃) = Re
{
(Ũ (y), Ṽ (y), Φ̃(y))Z̃(z)ei(kx−ωt)

}
, (1.2)

where k is a real along-stream wavenumber. The physical interpretation of z,
φ̃(x, y, z, t), and the vertical structure function Z̃(z) depends upon the equations
used to model the vertical structure of the fluid. With the Boussinesq equations, z is
a geometrical coordinate, φ̃ simply corresponds to the pressure perturbation divided
by a reference density, and Z̃(z) = eimz (e.g. Salmon 1998, § 2.16). With the primitive
equations, z is a log-pressure coordinate, φ̃ is the geopotential, and Z̃(z) = ez/2H eim̃z,
where m2 = m̃2 + 1/4H 2, and H is a scale height (e.g. Andrews, Holton & Leovy
1987, § 4.7). Equations (1.1a)–(1.1c) also describe disturbances to a one-layer flow of
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uniform depth h, if N2/m2 is replaced by gh. A more general stability analysis for
one-layer flow is given by Ripa (1983).

Generally, (1.1a–c) can be manipulated into a single equation for Ṽ (y):

d2Ṽ

dy2
+

(
2kω̂U ′

ω̂2 − N2k2/m2

)
dṼ

dy
+

(
m2

N2
(ω̂2 − fQ) − k2 − kQ′

ω̂
− 2k2QU ′

ω̂2 − N2k2/m2

)
Ṽ =0,

(1.3)
which is equation (3.14) of Boyd (1978) for instance, where U ′ = dU/dy, and

ω̂(y) = ω − kU (y). (1.4)

To complete the formulation, we must specify the y-domain and appropriate boundary
conditions, turning (1.3) into an eigenvalue problem for the unknown frequency ω.
We consider an unbounded flow −∞ < y < ∞ with

Ṽ → 0 as |y| → ∞. (1.5)

However, since the solutions we develop are localized, the analysis also applies to
bounded and periodic domains.

A bound on the growth rate Im(ω) can be obtained by considering a disturbance
energy (cf. the corresponding analysis of Yavneh, McWilliams & Molemaker (2001)
for a cylindrical geometry). Substituting (1.2) into (1.1), forming Ũ ∗ × (1.1a) + Ṽ ∗ ×
(1.1b) + (m/N)2Φ̃∗ × (1.1c), taking the real part, integrating from −∞ to ∞ and using
(1.5), gives

Im (ω) =

−
∫ ∞

−∞
U ′(y)Re

(
Ũ ∗Ṽ

)
dy∫ ∞

−∞

(
|Ũ |2 + |Ṽ |2 + (m/N)2|Φ̃|2

)
dy

.

Since 0 � |Ũ ± Ṽ |2 = (Ũ ± Ṽ )(Ũ ∗ ± Ṽ ∗), which implies that 2|Re(Ũ Ṽ ∗)| � |Ũ |2 + |Ṽ |2,

|Imω| �
max(|U ′(y)|)

∫ ∞

−∞
|Re(Ũ ∗Ṽ )| dy∫ ∞

−∞
(|Ũ |2 + |Ṽ |2 + (m/N )2|Φ̃|2)dy

�
max(|U ′(y)|)

2
. (1.6)

2. Symmetric solutions
Symmetric solutions of (1.1a–c), i.e. those with k = 0, are of two types. The first

type, with ṽ = 0 and ω = 0, are not studied here. We consider the second type, with
ṽ �= 0, which are obtained by setting k = 0 in (1.3):

d2Ṽ

dy2
+

m2

N2
(ω2 − fQ)Ṽ = 0. (2.1)

This is a Schrödinger equation with eigenvalue ω2. We suppose that

(i) fQ is smooth, (2.2a)

(ii) fQ has a unique global minimum y = y, where (fQ)′′ > 0, (2.2b)

(iii) min ( fQ) < ( fQ)∞, where ( fQ)∞ = min{limy→−∞ fQ, limy→∞ fQ}. (2.2c)

With (1.5), this implies the existence of a set of discrete eigenvalues (e.g. Messiah 2000,
§ 3.10). If fQ → ∞ as |y| → ∞, the discrete set is countably infinite, with ω2 > min( fQ).
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If ( fQ)∞ is bounded, the discrete set is finite, with min(fQ) < ω2 < ( fQ)∞. In this latter
case, there is also a continuous spectrum of eigenvalues with ω2 > ( fQ)∞, but the
corresponding eigensolutions do not satisfy (1.5). Such solutions are not considered
here.

2.1. The leading-order near-inertial solution

We develop approximations for the discrete eigenvalues and eigenmodes satisfying
(1.5) and (2.1). We seek solutions which are localized on a length scale L about a
particular streamline y = y, and thus work in terms of a transformed cross-stream
coordinate

Y =
y − y

L
. (2.3)

Although not immediately obvious, (2.1) has a distinguished limit for a particular
scaling of L → 0 and |m| → ∞. Since the length scale of the perturbations is then
much less than that of fQ , a Taylor expansion of fQ is useful for the scales of interest.
Then, in terms of Y , (2.1) becomes

d2Ṽ

dY 2
+

m2L2

N2

(
ω2 − fQ − LY (fQ)′ − 1

2
L2Y 2(fQ)′′ − · · ·

)
Ṽ = 0, (2.4)

where the overbar denotes evaluation at y = y. As L → 0, localized solutions can be
extracted from (2.4) provided (fQ)′ = 0 and L ∼ |m|−1/2 → 0. The optimal scaling
between L and |m| is

L =

(
1

a|m|

)1/2

, a =

(
(fQ)′′

2N2

)1/2

, (2.5a,b)

where a is a constant with dimensions of inverse length, introduced for convenience,
in which case (2.4) becomes

d2Ṽ

dY 2
+

(
ω2 − fQ

a2N2L2
− Y 2

)
Ṽ =

1

a2N2

(
L(fQ)′′′Y 3

6
+

L2(fQ)′′′′Y 4

24
+ . . .

)
Ṽ . (2.6)

With this formulation, the terms on the right-hand side of (2.6) are small compared
with those on the left-hand side in the limit L → 0, or equivalently as |m| → ∞, at
least when Y ∼ 1. An approximate solution is thus obtained by setting the right-
hand side of (2.6) to zero, and then (1.5) implies that solutions exist only when
ω2 − fQ = (2n + 1)a2N2L2, where n is a non-negative integer (e.g. Bender & Orszag
1978, p. 133). Using (2.5), we can equivalently write this eigencondition as ω2 = ω2

[1],
where

ω2
[1] = fQ +

(2n + 1)N

|m|

(
(fQ)′′

2

)1/2

. (2.7)

The corresponding eigenmodes Ṽ are proportional to Hn(Y ), where

Hn(x) = (−1)nex2/2 dn

dxn

(
e−x2)

(2.8)

is the nth order Hermite function. Thus, from (1.2) and (2.3), the cross-stream flow is

ṽ ∼ Hn

(
y − y

L

)
Re

(
ωA Z̃(z)e−iωt

)
as |m| → ∞, (2.9)
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for some complex constant A, where ω is the leading-order frequency, from (2.7):

ω = ±(fQ)1/2. (2.10)

2.2. Spatial structure of the solution

Using Taylor expansions of f and Q about y = y in (1.1a,c), and substituting for m

and a from (2.5), the remainder of the leading-order solution is

ũ ∼ QHn

(
y − y

L

)
Re

(
iAZ̃(z)e−iωt

)
, (2.11)

φ̃ ∼ − 1
2
(fQ)′′L3H ′

n

(
y − y

L

)
Re

(
iAZ̃(z)e−iωt

)
. (2.12)

With (2.9), this describes a shallow overturning motion in the (y, z)-plane with n + 1
cells in the cross-stream direction, accompanied by n + 1 jets in the along-stream
direction, confined to a thin band of width L ∝ |m|−1/2 around y, the minimum of
fQ . From (2.5), the cross-stream scale L is also determined by the curvature of fQ
at y = y: a shallower minimum in fQ leads to a wider disturbance. For the n = 0
solution, which is the most unstable or has the lowest frequency, (2.8) and (2.9)
imply that ṽ ∝ exp(−(y − y)2/2L2), so that the leading-order cross-stream structure
is symmetric about y = y.

The dynamical balance of (2.9), (2.11) and (2.12) is near-inertial, i.e. it involves
negligible horizontal pressure gradients. The x-momentum balance is clearly inertial,
since ∂φ̃/∂x = 0 when k = 0. In the y-momentum balance, (2.11) and (2.12) imply

∂φ̃/∂y

f ũ
∼ − (fQ)′′L2

2(fQ)

H ′′
n

Hn

=
(fQ)′′L2

2ω2

(
2n + 1 −

(
y − y

L

)2
)

as |m| → ∞. (2.13)

Thus, in the region of large-amplitude motion where |y − y| ∼ L, the cross-stream
pressure gradient becomes negligible compared to the Coriolis acceleration as L → 0
(or |m| → ∞), so that there is a purely inertial balance between ∂ṽ/∂t and f ũ in
this limit. Thus, heuristic ‘pressureless’ parcel arguments (e.g. Holton 1992, § 7.5.1) are
justified in the limit |m| → ∞, when L ∼ |m|−1/2.

If ω2 = fQ > 0, the solutions are near-inertial waves, and (2.13) shows that the
cross-stream pressure gradient reinforces the Coriolis acceleration near y = y, leading
to a greater restoring force and hence higher-frequency waves as |m| decreases. If
ω2 < 0, the solutions are inertial instabilities, and the cross-stream pressure gradient
opposes the Coriolis acceleration near y = y, leading to a smaller destabilizing force
and hence a lower growth rate as |m| decreases. This stabilizing effect was noted for
particular solutions by Dunkerton (1981, figure 1) and Stevens (1983, figure 6), but
it generalizes to all other flows satisfying (2.2a–c). Indeed, it can be established from
(2.1) using a variational approach, such as that used for a related problem by Griffiths
(2003a, Appendix), that

∂ω2/∂ |m| < 0, ω2 → min (fQ) as |m| → ∞. (2.14a,b)

Thus, when |m| falls below some value mb, often referred to as a buoyancy cutoff
wavenumber, the cross-stream pressure gradient renders the flow stable: ω2 > 0 for
|m| < mb. We can estimate mb by setting ω2

[1] = 0 in (2.7). Assuming that Q ∼ f , and
introducing λ as a length scale for fQ , we find that

mb ∼ (N/f )λ−1. (2.15)
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For a flow with characteristic shear Λ on the equatorial β-plane, fQ ≈ βy(βy − Λ)
implying a length scale λ ∼ Λ/2β , so that f ∼ βλ ∼ Λ/2, and mb ∼ 4Nβ/Λ2.

2.3. The Rayleigh–Schrödinger perturbation expansions

We can make the analysis more systematic by expanding ω2 and Ṽ as

ω2 ∼ ω2
0 + (aL)2ω2

1 + (aL)4ω2
2 + . . . , Ṽ (y) ∼ Ṽ0(y) + aLṼ1(y) + . . . , (2.16a,b)

substituting into (2.6), and gathering together terms of like order in L. The reasoning
leading to (2.7) implies that

ω2
0 = fQ, ω2

1 = (2n + 1)N2, Ṽ0(y) = Hn(Y ). (2.17)

Equivalent expressions for ω2
0 and ω2

1 could be obtained by using the standard WKB
expansion for a double turning-point eigenvalue problem (e.g. Bender & Orszag 1978,
§ 10.5), followed by a simplification to allow for the closeness of the turning points
as |m| → ∞, as in Billant & Gallaire (2005). However, the Rayleigh–Schrödinger
perturbation approach is more direct, and higher-order corrections are more easily
derived. The next-order terms in (2.16a,b) are derived in Appendix A: see (A5) and
(A6). It turns out that only even powers of L are required in (2.16a).

Although it is simple to construct such expansions for almost arbitrary fQ , the
analysis has one weakness: the ‘perturbative’ terms of the right-hand side of (2.6) are
not small compared with those on the left-hand side when Y ∼ L−1. The perturbation
problem is singular. The price we pay for the simplicity of the analysis is that (2.16a,b)
are usually divergent for all L. However, they are asymptotic series for Ṽ and ω2 (e.g.
Bender & Orszag 1978, § 3.8), and useful information can still be extracted provided
(2.2a–c) are satisfied (n.b. it is necessary that y be the global minimum of fQ , although
this was not apparent in § 2.1). Then, it is possible to study how such series may be
optimally truncated (e.g. Toloza 2001) or Padé resummed (e.g. Sergeev & Goodson
1998). The archetypal problem illustrating these concepts is that of the quantum
anharmonic oscillator (e.g. Bender & Orszag 1978, § 7; Bender & Bettencourt 1996).

Since we derive only the first three terms of (2.16a,b), we will simply evaluate the
utility of the truncated series

ω2
[J ] =

J∑
j=0

(aL)2jω2
j , Ṽ[J ](y) =

J∑
j=0

(aL)j Ṽj (y) (J = 0, 1, 2). (2.18)

Even though the full series may be divergent, we expect (2.18) to be useful
approximations when the cross-stream scale separation underlying the analysis is
satisfied, i.e. when

L � λ, where λ is a length scale for the flow. (2.19)

The first non-trivial approximation for ω2 is (2.7), which is consistent with (2.14a,b).
However, higher-order approximations are not guaranteed to satisfy (2.14a). For
instance, if ω2

2 is negative then ∂ω2
[2]/∂ |m| > 0 for sufficiently small |m|, and it is more

natural to use the [1/1] Padé approximant (e.g. Bender & Orszag 1978, § 8.3):

ω2
[1/1] =

ω2
0 + (aL)2

(
ω2

1 − ω2
0ω

2
2/ω

2
1

)
1 − (aL)2ω2

2/ω
2
1

. (2.20)

This agrees with (2.16a) up to terms of order L4, and satisfies (2.14a,b).
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2.4. Example: shear layer on an f -plane

Consider the family of shear flows given by

U = f λRo tanh(y/λ), fQ = f 2
(
1 − Ro sech2(y/λ)

)
, (2.21)

with f constant, λ > 0, and Ro > 0 to satisfy (2.2b,c). This is a particularly useful
case to examine because the eigenvalues, for (1.5) and (2.1), can be determined exactly
(e.g. Bender & Orszag 1978, p. 28):

ω2 = −f 2

⎛
⎝Ro − 1 − (2n + 1)

mf

|m|

(
Ro +

m2
f

4m2

)1/2

+

(
n2 + n +

1

2

)
m2

f

m2

⎞
⎠ . (2.22)

Here mf = (N/|f |)λ−1, and n is any integer satisfying

0 � n � 1
2

[(
1 + 4Ro (m/mf )2

)1/2 − 1
]
,

so that there are only a finite number of discrete eigenvalues. As |m| decreases, the
number of discrete solutions decreases, although the n = 0 solution exists for all |m|,
with ω2 → f 2 as |m| → 0. When 0 < Ro � 1, (2.22) describes inertia–gravity waves.
When Ro > 1, there is a region with fQ < 0, and (2.22) describes an inertial instability
when |m| > mb, where

mb = (Ro − 1)−1(N/|f |)λ−1. (2.23)

This is consistent with the scaling of (2.15).
We apply the asymptotic analysis of § 2.3 by setting y = 0 in (2.5), giving

L = Ro−1/4

(
N

|f |
λ

|m|

)1/2

= λRo−1/4

(
mf

|m|

)1/2

, (2.24)

whilst (2.16a), (2.17) and (A6) then give

ω2 ∼ −f 2

(
Ro − 1 − (2n + 1)Ro1/2 mf

|m| +

(
n2 + n +

1

2

)
m2

f

m2
+ . . .

)
, (2.25)

as |m| → ∞. Comparing with (2.22), it is clear that (2.25) recovers the correct
behaviour as |m| → ∞. Since ω2

2 < 0, the best truncated approximation to use is
ω2

[1/1], given by (2.20). For the n = 0 eigenmode, it can be shown that (i) ω2
[1/1] − ω2

is positive and monotonically decreases as |m| increases, so that the maximum error
occurs at |m| = 0, with value Ro f 2; (ii) if 1 < Ro � 2, then |ω2

[1/1] − ω2| < 0.05f 2

over the unstable region. Thus, even though (2.19) and (2.24) imply a scale separation
only when |m| � Ro−1/2mf , ω2

[1/1] is accurate for |m| of order mf .
This example illustrates two limitations of the analysis. First, it gives infinitely

many discrete eigenvalues, whereas there are only a finite number for cases such
as (2.21) with ( fQ)∞ bounded. However, this is not a concern if we are interested
only in the most unstable (or lowest frequency) eigenmode, which is obtained by
setting n = 0. Secondly, (2.1) and (2.21) show that discrete eigenmodes Ṽ (y) behave
as exp(−|m|(f 2 − ω2)1/2|y|/N) for large |y|, whilst the leading-order solution (2.9)
behaves as exp(−y2/2L2). Bender & Bettencourt (1996) discuss a similar disparity,
and show how such differences can be resolved by considering higher-order terms
of the expansion. However, the large-amplitude behaviour of Ṽ (y), near y = 0, is
predicted well by the leading-order solution.



Limiting form of inertial instability in geophysical flows 123

1 2 4 8 16

0

–0.5

–1.0

0.5

1.0(a) (b)

|m| / (4Nβ /Λ2)

ω
2 /(

Λ
2 /4

)

ω2

ω2
[1]

ω2
[2]

ω2
[1/1]

0 1 2

0

–0.2

0.2

0.4

0.6

0.8

1.0

1.2

y / (Λ/β)

V~

V
~

V
~

[0]

V
~

[1]

V
~

[2]

Figure 2. (a) Numerically determined and analytically estimated eigenvalues ω2 for the
symmetric (k = 0) instability of profile (2.26) at α = 1. (b) Corresponding cross-stream
structure Ṽ (y) at |m| = 6Nβ/Λ2, normalized so that Ṽ = 1 at y = Λ/2β .

2.5. Example: shear layer on the equatorial β-plane

We now consider flows on the equatorial β-plane, and thus set f = βy. Exact solutions
are available for flows with uniform shear (Dunkerton 1981) or linear shear (Stevens
1983), both of which are recovered by (2.7) and (2.9), since all higher-order corrections
vanish. Here we consider a set of shear layers with finite width λ and maximum shear
Λ:

U (y) = λΛ tanh ((y − Λ/2β)/λ) . (2.26)

Each flow is characterized by a single non-dimensional parameter α = Λ/(2βλ), with
the uniform shear case recovered as α → 0.

To apply the asymptotic analysis of § 2.3, we note that fQ has a minimum at
y = Λ/2β , with fQ = −Λ2/4, and (fQ)′′ = 2β2 + Λ2/λ2. This turns out to be the
global minimum, so that (2.5) gives

L = (1 + 2α2)−1/4(N/β|m|)1/2, (2.27)

whilst (2.16a), (2.17) and (A6) give

ω2 ∼ −Λ2

4

(
1 −

(
1 + 2α2

)1/2 mβ

|m| +
α4

(
15 + 8α2

)
4(1 + 2α2)2

m2
β

m2
+ . . .

)
, mβ =

4Nβ

Λ2
, (2.28)

as |m| → ∞. Since fQ < 0, the flow is unstable for sufficiently large |m|, so we have set
n = 0 in (2.28) to obtain the most unstable eigenmode. Compared to the uniform shear
limit α = 0, at α �= 0 the instability has a smaller growth rate, a smaller latitudinal
scale, and a larger buoyancy cutoff wavenumber: mb ≈ (1 + 2α2)1/24Nβ/Λ2, based on
ω2

[1]. Even though fQ is independent of α, when α �= 0 the flow is less unstable at
finite |m| since the shear layer is of limited extent.

We evaluate the accuracy of the asymptotic analysis by comparing with numerical
calculations of the most unstable eigenmode, obtained as described in Appendix B.
Typical results, at α = 1, are shown in figure 2(a), along with the predictions obtained
from (2.28). We can see that ω2

[1], ω2
[2] and ω2

[1/1] recover the correct limiting behaviour

of ω2 at large |m|. Since the coefficient of |m|−2 in (2.28) is negative, ω2
[2] eventually
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decreases for sufficiently small |m|, and ω2
[1/1] is clearly the best approximant. Using

(2.27), the scale separation condition (2.19) reduces to |m| � 4Nβ/Λ2 when α is of
order unity, but ω2

[1/1] is accurate to within 0.02 × Λ2/4 even when |m| = 4Nβ/Λ2.
Shown in figure 2(b) is the latitudinal structure of the most unstable eigenmode at

α = 1 and |m| = 6Nβ/Λ2, close to the buoyancy cutoff, where L/λ = 21/2/33/4 = 0.62.
Whilst the leading-order prediction Ṽ[0] is symmetric about y = Λ/2β , Ṽ (y) is

asymmetric, and part of this asymmetry is captured by Ṽ[1] and Ṽ[2]. The maximum

absolute errors for Ṽ[0], Ṽ[1] and Ṽ[2] are 0.37, 0.22 and 0.08, respectively. Convergence

is slower for Ṽ (y) than it is for ω2, since from (2.16b) corrections for Ṽ (y) are only
proportional to |m|−1/2.

3. Non-symmetric solutions
We now turn to the main problem of interest: determination from (1.3) of the

frequency ω and structure of the near-inertial eigenmodes when k �= 0. Although
this is considerably more complex than the problem with k = 0, we again seek
localized solutions with a simple Rayleigh–Schrödinger perturbation expansion. This
generalizes and extends the analysis of Clark & Haynes (1996), who used similar
methods to determine the stability of an equatorial flow with uniform latitudinal
shear. There are also similarities to a stability analysis of quasi-geostrophic flow by
Killworth (1980, § 8). We shall focus on unstable flows for which the imaginary part
of ω is non-zero, so that (1.3) has no singularities.

Throughout this section we shall make frequent comparison with the results of
Billant & Gallaire (2005), who solved the corresponding problem for flows with
circular symmetry. Although they used a somewhat different approach (a WKB
expansion), their results are closely related to those given here.

3.1. The small-k regime

We start by illustrating some generic properties of the non-symmetric eigenmodes by
considering their form at small k and large |m|. As in § 2, we suppose that there is
a streamline y = y at which fQ has a global minimum, and that the solutions have
a small cross-stream length scale L. The leading-order terms in k and m can then
be obtained by setting k ∼ L ∼ |m|−1/2, and considering the limit |m| → ∞. We use
(2.16b) for Ṽ (y), but for ω we write

ω − kU ∼ ω0 + (aL)2ω1 + . . . . (3.1)

Our construction is based upon the k = 0 solutions, and thus we must have ω0 =

ω = ±
(
fQ

)1/2
, where ω is the leading-order (imaginary) frequency at k = 0. Then,

introducing a rescaled coordinate Y according to (2.3) and (2.5), (1.3) becomes

d2Ṽ0

dY 2
+

(
2ωω1

N2
− 4ωU ′

(fQ)′′

[
k

L

]
Y − Y 2

)
Ṽ0 = O(L), (3.2)

where we have used Taylor series for U (y) and (fQ)(y) around y = y. In the coefficient
of Ṽ in (1.3), the only terms which contribute to (3.2) at leading order come from
ω̂2 − fQ .

Equation (3.2) reduces to the parabolic cylinder equation when written in terms of
Y + 2ωkL−1U ′/(fQ)′′. Thus, using (2.3), for solutions satisfying (1.5) we find

Ṽ0 = Hn

(
y − yk

L

)
, yk = y − 2kωU ′/(fQ)′′, (3.3a,b)
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Figure 3. Inertial instability of the hyperbolic-tangent velocity profile (2.21) at small k. (a)
Growth rates (symbols) at |m| = 8mb , with mb given by (2.23), along with the theoretical
predictions (solid lines) determined from (3.5). (b) Cross-stream structure at Ro = 2, k = 0.2λ−1

and |m| = 8mb = 8(N/|f |)λ−1, along with theoretical predictions determined from (3.6a).

and a corresponding eigencondition for ω1. Substituting into (3.1), the series for ω

starts

ω ∼ kU ± (fQ)1/2

(
1 +

(2n + 1)N

2|m|(fQ)

(
(fQ)′′

2

)1/2

− k2U ′2

(fQ)′′
+ . . .

)
, (3.4)

using (2.5) and (2.10), where k → 0 and |m| → ∞. Thus, for the growing mode, the
growth rate decreases as |k| increases from zero. Billant & Gallaire (2005) reported a
corresponding result for flows with circular symmetry.

From (3.3a), the eigenmodes are now centred at yk rather than y. However, from
(3.3b), yk is complex, since ω is imaginary, so that the eigenmodes are apparently
centred at a complex streamline. This is consistent with the results of Billant &
Gallaire (2005), in which stability was determined by properties evaluated at a
complex radius. Although the use of a complex streamline is somewhat alarming,
stability calculations often require physical space to be immersed in the complex
plane, which is perhaps related to the introduction of the Fourier representation (1.2).
There is a strong analogy here with absolute instability calculations (e.g. Chomaz,
Huerre and Redekopp 1991), where growth rates are determined by evaluating a
dispersion relation at a spatial location in the complex plane.

Nevertheless, to check that these solutions do have physical relevance, we return to
the flow of § 2.4 and calculate ω numerically for the n = 0 eigenmode over 0 � λk � 0.5
and 1 < Ro � 3 (we shall have more to say about how these solutions are calculated
in § 4). The results are shown in figure 3(a). Also shown are the predictions of (3.4)
with n = 0, which using (2.21) with y = 0 becomes

ω ∼ ±if (Ro − 1)1/2

(
1 − Ro1/2

2(Ro − 1)

N

f λ|m| − Roλ2k2

2
+ . . .

)
. (3.5)

Figure 3(a) shows that (3.5) captures the variations of ω with k, at least for sufficiently
large |m|, so that the use of a complex streamline yk is justified.
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Figure 4. Horizontal structure of the non-symmetric inertial instability. Contoured is the
pressure perturbation: white is negative, dark grey is positive. The arrows indicate the

horizontal velocity vector, the length of the arrow being proportional to
√

ũ2 + ṽ2. The
x-component of each arrow has been enhanced by a factor of 5 relative to the y-component.
The two horizontal dashed lines are y = y ± L.

3.2. Spatial structure of the solution

The need for yk to be complex reflects a change in the spatial structure of the solutions
from that at k = 0. For instance, normalizing the n = 0 eigenmode so that Ṽ = 1 at
y = y, (2.8) and (3.3a,b) give

Ṽ ∼ Ṽ0 = exp

{
− (y − y)2

2L2

}
exp {il(y − y)} , l =

2ikωU ′

L2(fQ)′′
. (3.6a,b)

Here, l is a real cross-stream wavenumber, since ω is imaginary. Thus, at fixed x,
z and t , the most unstable eigenmode has cross-stream oscillations modulated by a
Gaussian envelope. This is confirmed in figure 3(b), where (3.6a) is compared with
a numerically determined solution corresponding to a case shown in figure 3(a). The
largest values of |Ṽ | are associated with Re Ṽ , which is symmetric about y = y, with
limiting form cos(l(y − y)) exp(−(y − y)2/2L2). At small k, the modulating Gaussian
envelope ensures that the oscillations in Ṽ for |y −y| > π/2l are invisible. In contrast,
Im Ṽ is asymmetric about y = y, with limiting form sin(l(y − y)) exp(−(y − y)2/2L2).
However, at small k, the modulating Gaussian envelope renders this weak relative to
the symmetric pattern of Re Ṽ .

The wavenumbers k and l imply the appearance of phase lines in the horizontal
and vertical structure of the solution. For instance, for the n = 0 eigenmode, the
horizontal velocities can be written as(

ũ

ṽ

)
∼ exp

{
− (y − y)2

2L2

}
Re

{(
iQ

ω

)
A exp(i(kx + l(y − y) − ωt)Z̃(z)

}
, (3.7a,b)

to leading order as k → 0 and |m| → ∞, using (1.1a), (1.2) and (3.6a), for some
complex constant A. This pattern is illustrated in figure 4, which was generated
from the numerical solution of figure 3(b). The largest velocities (at kx = π/2 and
kx = 3π/2) have cross-stream symmetry, although a weaker pattern with cross-stream
asymmetry also exists (at kx = π). This is in contrast to the picture at k = 0, where
to leading order ũ and ṽ are always symmetric about y = y for the most unstable
eigenmode, being simply the Gaussian envelope of (3.7a,b) with k = l = 0.
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Where the strong horizontal flow dies out or reverses, there are regions of horizontal
divergence, producing the pattern of pressure perturbations contoured in figure 4. For
instance, at the points marked H1 and H2, there must be upward flow (and positive
density perturbations) aloft and downward flow (and negative density perturbations)
beneath, implying local pressure maxima. The converse applies at the points L1 and
L2. Since ∂ṽ/∂y ∼ ṽ/L and ∂ũ/∂x ∼ kũ, and ũ ∼ ṽ, the horizontal divergence
is mainly generated by ∂ṽ/∂y, so that the pressure perturbations are largest near
kx = π/2 and kx = 3π/2, and are approximately asymmetric about y = y. The
horizontal divergence generated by ∂ũ/∂x and the asymmetric part of ṽ leads to a
weaker pattern with cross-stream symmetry at kx = π. Dunkerton (1983, § 3e) has
also discussed the horizontal structure of non-symmetric solutions in similar terms,
but for rather different parameters.

It is clear from figure 4 that both the cross-stream pressure gradients (from H1 to L1)
and the along-stream pressure gradients (from H2 to L2) oppose the horizontal motion
of the instability. We evaluate the degree to which these horizontal pressure gradients
enter the dynamical balance, relative to the inertial terms which are dominant as
|m| → ∞ at k = 0. For the n = 0 eigenmode, (1.1a), (2.5) and (3.7b) imply

φ̃ ∼ 1
2
(fQ)′′L3 exp

(
− (y − y)2

2L2

)

× Re

((
i(y − y)

L
+

2ikωU ′

L(fQ)′′

)
A exp(i(kx + l(y − y) − ωt))Z̃(z)

)
. (3.8)

Thus, using (3.7b), ∂φ̃/∂x = −k2L2U ′ṽ at y = y, so that in the along-stream
momentum balance −(∂φ̃/∂x)/(Qṽ) = −k2L2(1 − f/Q) at y = y. Thus, as already
noted graphically, at the centre of the unstable region the along-stream pressure
gradient opposes the inertial term Qṽ, since f/Q < 0. However, since the pressure-
gradient scales as k2L2 relative to the inertial terms, it is insignificant for small k and
L. More significant is the cross-stream pressure gradient, for which (2.5), (3.6) and
(3.8) imply

∂φ̃/∂y

f ũ

∣∣∣∣
y=y

∼ N

|m|(fQ)

(
(fQ)′′

2

)1/2

− 2k2U ′2

(fQ)′′
. (3.9)

The term ∝ N/|m|, which opposes the Coriolis acceleration since fQ < 0, is the
leading-order effect of buoyancy, and has already been discussed in (2.13). The term
∝ k2, which is the leading-order effect of along-stream asymmetries, also opposes
the Coriolis acceleration. Thus, the along-stream asymmetries act to increase the
cross-stream pressure gradient, which opposes the destabilizing Coriolis acceleration
and thus reduces the growth rate of the inertial instabilities. Note the consistency of
this analysis with (3.4), in which the corrections to the leading-order frequency ω for
the n = 0 eigenmode are proportional to (3.9). Repeating the calculation (3.9) for the
nth eigenmode, using (A2) for H ′′

n , leads to an additional factor (2n + 1) to make the
correspondence exact.

Although these conclusions only hold for sufficiently small k and large |m|, they can
be used to anticipate results for larger k and smaller |m|. In particular, we anticipate
that when k approaches some value kc, which we might call a short-wave cutoff
wavenumber, the cross-stream pressure-gradient associated with the along-stream
asymmetries can completely stabilize the flow. This is analogous to the buoyancy
cutoff for the vertical wavenumber introduced in § 2.1. We can estimate the magnitude
of kc by considering when the term of (3.4) purely associated with along-stream
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asymmetries becomes comparable to the leading-order growth rate. If U ′ ∼ f and fQ

has length scale λ, this occurs when k2 ∼ (fQ)′′/U ′2 ∼ (f 2/λ2)/f 2 ∼ λ−2, implying

kc ∼ λ−1. (3.10)

For flows on the equatorial β-plane, for which λ ∼ Λ/β , we thus expect kc ∼ β/Λ.

3.3. The general analysis

We now consider the most general case with no a priori restrictions on k. Since in
§ 3.1 the centring of the modes became k-dependent, we introduce a general rescaled
and shifted cross-stream coordinate Y defined via

Y =
y − yk

Lk

, Lk =

(
1

ak|m|

)1/2

. (3.11a,b)

Here yk and ak will depend on k but are independent of m, and will be determined
as part of the analysis. In terms of Y , the governing equation (1.3) becomes

L2
k

d2Ṽ

dY 2
+

(
2L3

kkω̂U ′

ω̂2 − L4
kN

2a2
k k

2

)
dṼ

dY

+

(
ω̂2 − fQ

a2
kN

2
− L4

k

(
k2 +

kQ′

ω̂
+

2k2QU ′

ω̂2 − L4
kN

2a2
k k

2

))
Ṽ = 0. (3.12)

Once again we shall seek solutions in the limit Lk → 0, and thus make Taylor
expansions about y = yk for f , U and Q in (3.12). We also introduce perturbation
expansions

ω − kUk ∼ ω0 + (akLk)
2ω1 + (akLk)

4ω2 + . . . , (3.13)

Ṽ (y) ∼ Ṽ0(Y ) + (akLk) Ṽ1(Y ) + (akLk)
2 Ṽ2(Y ) + . . . , (3.14)

where Uk = U (yk).
Gathering together terms of like order in Lk in (3.12), it is apparent that the ω̂2 −fQ

term determines the low-order behaviour. Using (1.4) and (3.13), we have

ω̂2 − fQ = ω2
0 − (fQ)k − Lk

(
2kω0U

′
k + (fQ)′

k

)
Y

+ L2
k

(
2a2

kω0ω1 −
(

1
2
(fQ)′′

k + kω0U
′′
k − k2U ′

k

2
)

Y 2
)

+ O(L3
k). (3.15)

Thus, since Ṽ0(Y ) is not identically zero, the leading-order terms of (3.12), of O(1),
imply

ω2
0 − (fQ)k = 0. (3.16a)

By the same reasoning, the next-order terms of (3.12), of O(Lk), yield

2kω0U
′
k + (fQ)′

k = 0. (3.16b)

The coupled system (3.16a,b) may be solved to give yk and ω0 in terms of k. The next
order terms of (3.12), of O(L2

k), may be simplified by choosing

ak =

(
(fQ)′′

k + 2kω0U
′′
k − 2k2U ′

k

2

2N2

)1/2

(−π/2 < arg ak � π/2). (3.17)
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In (3.11b), the square root is taken in a similar manner, so that −π/4 � arg Lk < π/4.
Then, using (3.15), the relevant terms of (3.12) are

d2Ṽ0

dY 2
+

(
2ω0ω1

N2
− Y 2

)
Ṽ0 = 0, Ṽ0 → 0 as Y → ±arg(Lk)∞,

the boundary conditions following from (1.5) and (3.11a). If arg(ak) = π/2, then there
are no solutions with Ṽ0 and dṼ0/dY decaying as |y| → ∞, as may be shown by
considering the asymptotic behaviour as |Y | → ∞ of the parabolic cylinder functions
(e.g. Bender & Orszag 1978, pp. 131–133). Otherwise, that is if

arg
(
(fQ)′′

k + 2kω0U
′′
k − 2k2U ′

k

2
)

�= π, (3.18)

there are solutions for Ṽ0 and an eigencondition for ω1:

Ṽ0 = Hn(Y ), ω1 =
(2n + 1)N2

2ω0

. (3.19a,b)

Here n is a non-negative integer, and the Hermite functions are defined by (2.8).
Thus, using (3.11b), (3.17) and (3.19b), the first two terms of (3.13) are

ω ∼ kUk + ω0 +
(2n + 1)N

2ω0|m|

(
1
2
(fQ)′′

k + kω0U
′′
k − k2U ′

k

2
)1/2

+ . . . , (3.20)

whilst from (1.2), (3.11a) and (3.19a) the leading-order cross-stream flow is

ṽ ∼ Re

(
ωAHn

(
y − yk

Lk

)
Z̃(z) exp (i(kx − ωt))

)
, (3.21)

for some complex constant A, as |m| → ∞. It is simple, albeit lengthy, to calculate the
next terms in both series. The procedure is illustrated in Appendix A for the n = 0
eigenmode, yielding (A10) for Ṽ1 and (A12) for ω2.

3.4. Structure of the expansions

Construction of this solution relied upon three conditions. Two of these, (3.16a ,b), are
solved to give yk and ω0 in terms of k. The third condition, (3.18), then amounts to a
condition on k for eigenmodes of this form to exist. When k = 0, the three conditions
can be satisfied by choosing yk to be a minimum of fQ . However, when k �= 0, the
conditions are more difficult to solve. Further, if we suppose that a solution yk is real,
then, in general, (3.16b) implies that ω0 is real, so that from (3.13) ω is also real to
leading order in |m|−1. Thus for instability at leading order with k �= 0, yk will have an
imaginary part. This is consistent with the small k expansion (3.3b), and appears to
be necessary so that the solutions can be represented in terms of Hermite functions.

When k = 0, for the asymptotic series to be useful yk must be the global minimum
y of fQ . This was not apparent in the analysis of § 2.3, and by analogy we expect
there to be a similar hidden global criterion when k �= 0. This is a concern, because
(3.16a ,b) typically lead to at least two values for yk . Therefore we consider only
solutions for which

yk → y as k → 0. (3.22)

As already shown in (3.3b), for small k there exist two such solutions for yk , and we
assume that their extensions to finite k are physically meaningful. These solutions are
a natural extension of the symmetric inertial instabilities obtained at k = 0 to fully
three-dimensional inertial instabilities with k �= 0.
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Unlike the analysis of § 2.3, for which the Rayleigh–Schrödinger perturbation series
have well-established properties, there seems to be little mathematical foundation for
a corresponding complex analysis. However, our predictions are consistent with those
which would be obtained by using a more rigorous complex WKB method, such as
that used by Billant & Gallaire (2005). We justify our approach by showing that it
produces results consistent with numerically determined solutions. We shall analyse
unstable flows, and evaluate the growth rate σ and the intrinsic phase speed c at
y = y, defined via

σ = Im(ω), c =
(
Re(ω) − kU

)
/k. (3.23)

We evaluate the accuracy of truncated versions of (3.13):

σ[J ] = Im

(
kUk +

J∑
j=0

(akLk)
2n ωn

)
, (3.24)

with a corresponding expression for c[J ]. As before, we expect these approximations
to be useful when the scale separation underlying the analysis is satisfied, i.e. when
Lk � λ, where λ is a length scale for the flow. From (3.11), this will be assured when
|m| is sufficiently large, but just how large will depend on ak(k). To maintain the
ordering in (3.20), we also require ω0 to be of order unity, which must be checked
case-by-case.

4. Instability of a shear layer on the f -plane
We return to the family of flows (2.21), corresponding to an anticyclonic shear

layer on the f -plane. Here λ > 0 is the width of the shear layer, and Ro > 0 is a
Rossby number for the flow. When m = 0, (1.3) yields a barotropic Kelvin–Helmholtz
instability when λ|k| < 1, with a maximum growth rate of 0.19 × the maximum shear
(Michalke 1964), i.e. 0.19 |f |Ro when applied to (2.21). In contrast, when k = 0, (2.22)
implies an inertial instability when Ro > 1 and |m| > mb = (Ro−1)−1(N/|f |)λ−1, with
a maximum growth rate of |f |(Ro − 1)1/2. Thus, the inertial instability is expected
to be stronger than the Kelvin–Helmholtz instability when Ro � 1.05, provided |m|
can become sufficiently large (cf. the comments in § 4 of Stevens & Ciesielski 1986,
the numerical simulations of Shen & Evans 2002, and the results in § 5 of Billant
& Gallaire 2005). At Ro = 2, the k = 0 inertial instability is the strongest possible
normal-mode instability: σ → |f | as |m| → ∞, the maximum attainable value from
(1.6).

4.1. Limiting solutions

The small k theory of § 3.1 has already been applied to this flow, yielding (3.5). Now
we apply the theory of § 3.3 to obtain more general expressions for three-dimensional
inertial instabilities. Equations (3.16a ,b) lead to

ω0 = ±f

(
1 − Ro

1 − Roλ2k2

)1/2

, tanh

(
yk

λ

)
= ∓λk

(
1 − Ro

1 − Roλ2k2

)1/2

, (4.1)

and then (3.11b) and (3.17) give

ak =
|1 − λ2k2|(

Ro−1 − λ2k2
)1/2

|f |
Nλ

, Lk =

(
Ro−1 − λ2k2

)1/4

|1 − λ2k2|1/2

(
Nλ

|f ||m|

)1/2

. (4.2)
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Figure 5. (a) Numerically determined growth rate σ for the inertial instability of the flow
(2.21) at Ro = 2. (b) The theoretical prediction σ[1]. (c) The theoretical prediction σ[2]. In
each panel, the growth rate has been non-dimensionalized by |f |, the theoretical maximum at
Ro = 2, and results are shown for 0.025 � λ|k| � 0.69. In (a), the thick dashed line denotes
the value of |k| at which maximum growth rate is attained at fixed |m|. In (b) and (c) the
thick dashed line marks where |σ − σ[j ]| = 0.05|f |, whilst the thin dashed line marks where
|σ − σ[j ]| = 0.005|f |.

For physically meaningful solutions, (3.18) and (3.22) must also be satisfied. The latter
is automatically satisfied, since yk → y = 0 as k → 0, whilst the former requires

λ|k| < Ro−1/2, (4.3)

consistent with the scaling (3.10). Then using (3.19b) for ω1 and (A13) for ω2, for the
n = 0 eigenmode, (3.13) gives

ω ∼ ±f (1 − Ro)1/2

([
1 − Roλ2k2

]1/2
+

Ro1/2|1 − λ2k2|
2(1 − Ro)

mf

|m|

+
(1 − λ2k2)(Ro − 2 + 9Roλ2k2 − 8Ro2λ4k4)

8(1 − Ro)2(1 − Roλ2k2)3/2
m2

f

m2
+ . . .

)
, (4.4)

as m̃ → ∞, where mf = (N/|f |)λ−1 and λ|k| < Ro−1/2. When k = 0, (4.4) reduces to
(2.25). When k �= 0, we anticipate a breakdown in the theory when Ro → 1 or as
λ|k| → Ro−1/2, for then the first two terms in the series become comparable.

4.2. Numerical results

We evaluate the accuracy of (4.4) by solving the eigenvalue problem numerically.
Since (4.4) describes a single branch of the dispersion relation, we must compare it
with the corresponding single branch of the numerically determined ω(k, m). Thus,
rather than solving for the most unstable eigenmode, we seek the extension to finite
k and |m| of the n = 0 eigenmode obtained as k → 0 and |m| → ∞, as described in
Appendix B.

Figure 5(a), shows the growth rate obtained from such an approach, at Ro = 2.
The growth rate is symmetric about k = 0. At k = 0, the maximum growth rate is |f |,
and from (2.23) the symmetric buoyancy cutoff is at |m| = (N/|f |)λ−1. At large |m|,
the growth rate decreases from |f | as |k| increases from zero, as expected from (3.5).
However, for |m| � 2.5(N/|f |)λ−1, the growth rate increases as |k| increases from zero.
Thus, for sufficiently small |m|, weak along-stream asymmetries destabilize the flow.
When k �= 0, there is no longer a buoyancy cutoff wavenumber mb; rather, the growth
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rate remains positive as |m| decreases. Results from smaller |m| (not shown), indicate
that as |m| → 0 the growth rate approaches that of the classical Kelvin–Helmholtz
instability, with a maximum of 0.38|f |. Thus, it appears that the inertial instability (at
large |m| and small k) is one and the same mode as the Kelvin–Helmholtz instability
(at m = 0).

Figures 5(b) and (c) show the theoretical predictions σ[1] and σ[2] for the growth rate,
determined from (3.24) and (4.4). It is clear that these recover the correct behaviour
as |m| → ∞, and that σ[2] is somewhat more accurate than σ[1]. Note that σ[2] is
accurate to within 0.15 |f | when |m| > (N/|f |)λ−1, so that once again, the results are
useful when the scale separation condition (2.19) is violated. For yet smaller |m|, σ[1]

and σ[2] become useless, and a Padé resummation of the series must be considered.
A striking feature of the numerical results is that Re(ω) is apparently zero,

presumably due to the symmetry of f and U in y. For all calculations, |Re(ω)|
has a maximum value of 3 × 10−6|f | and an average value of 3 × 10−8|f |. This is
consistent with (4.4), which implies Re(ω) = 0 when Ro > 1. Given that Re(ω) = 0,
and normalizing the eigenmodes so that Ṽ (0) = 1, it follows that Re(Ṽ ) and Im(Ṽ )
are necessarily even and odd, respectively. This was apparent in figure 3(b), where
Ṽ (y) was shown at k = 0.2λ−1 and |m| = 8(N/|f |)λ−1. Also shown there is the
corresponding theoretical prediction Ṽ[0], which satisfies |Ṽ[0] − Ṽ | < 0.12. However,

accuracy is lost for larger k or smaller |m|, and Ṽ[1] and Ṽ[2] give no improvement.
Despite this failure, the growth rate is still predicted to high accuracy.

5. Instability of a uniform shear flow at the equator
Several previous theoretical studies (e.g. Boyd & Christidis 1982; Dunkerton 1983,

1993; Clark & Haynes 1996) have considered the stability of a zonal flow U = U0+Λy

on an equatorial β-plane. When m = 0, the flow is stable, since Q = βy − Λ implies
that dQ/dy is one-signed. However, as |m| increases from zero, there is a weak
instability at non-zero k associated with a critical-layer effect (Natarov & Boyd 2001).
In contrast, when k = 0, there is an inertial instability when |m| > mb = 4Nβ/Λ2

(Dunkerton 1981). The instability is concentrated where fQ < 0, i.e. between y = 0
and y = Λ/β , and is centred at y = Λ/2β . The inertial instabilities are strong, since
the maximum possible growth rate implied by (1.6) of |Λ|/2 is achieved at k = 0 and
as |m| → ∞.

5.1. Limiting solutions

We apply the results of § 3.3 to this flow, recovering and extending the analysis of
Clark & Haynes (1996). Equations (3.16a ,b) lead to

ω0 = ± iΛ

2

(
1 − k2Λ2

β2

)−1/2

, yk =
Λ

2β

(
1 ∓ ikΛ

β

(
1 − k2Λ2

β2

)−1/2
)

, (5.1)

and then (3.11b) and (3.17) give

Lk =

(
1 − k2Λ2

β2

)−1/4 (
N

β|m|

)1/2

, ak =
β

N

(
1 − k2Λ2

β2

)1/2

. (5.2)

These modes satisfy (3.22), and the condition (3.18) becomes |kΛ/β| < 1, consistent
with the scaling (3.10). Then using (3.19b) for ω1 and (A14) for ω2, (3.13) and (3.23)
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Figure 6. (a) Numerically determined growth rate σ for the inertial instability of a uniform
shear flow on the equatorial β-plane. The thick dashed line denotes the value of |k| at which
maximum growth rate is attained at fixed |m|. (b) The theoretical prediction σ[1]. (c) The
theoretical prediction σ[2]. In each panel, the growth rate has been non-dimensionalized
by |Λ|/2, the theoretical maximum. In (b) and (c) the thin dashed line marks where
|σ − σ[j ]| = 0.002|Λ|, whilst the thick dashed line marks where |σ − σ[j ]| = 0.01|Λ|.

give

σ ∼ ±Λ

2

(
1 − k2Λ2

β2

)1/2

×
(

1 − 2Nβ

|m|Λ2

(
1 − k2Λ2

β2

)1/2

− 2N2β2

m2Λ4

(
1 − 2k2Λ2

β2

)2

+ . . .

)
, (5.3)

c ∼ −2βN 2

m2Λ2

(
1− k2Λ2

β2

)(
1− 2k2Λ2

β2

)
+. . . , (5.4)

as |m| → ∞, for the n = 0 eigenmode. Elements of (5.3) have been developed
previously: Winter & Schmitz (1998) gave the leading-order term, whilst Clark &
Haynes (1996) gave the first two terms. Dunkerton (1993) gave a cubic equation
yielding approximate solutions for ω, which would probably yield similar expressions
as |m| → ∞.

5.2. Numerical results

We evaluate the accuracy of (5.3) and (5.4) by solving the eigenvalue problem
numerically. As in § 4.2, we solve for the extension to finite k and |m| of the n =
0 eigenmode obtained as k → 0 and |m| → ∞. Numerical details are given in
Appendix B. As noted by Dunkerton (1983), solutions only exist when |kΛ/β| < 1,
as may be diagnosed by consideration of (1.3) as |y| → ∞, so attention is confined to
this region. Apparently by chance, this is equivalent to the condition for the existence
of localized solutions.

The numerically determined growth rate is shown in figure 6(a) (cf. figure 1 of
Dunkerton 1993). At k = 0, the growth rate approaches |Λ|/2 as |m| → ∞, but falls
to zero at mb = 4Nβ/Λ2. At large |m|, the growth rate decreases as |k| increases
from zero, consistent with (3.4). However, for sufficiently small |m|, the growth rate
increases as |k| increases from zero, the transition occurring at |m| = 2.24 mb (Clark
& Haynes 1996). Figures 6(b) and (c) show the theoretical predictions σ[1] and σ[2]

for the growth rate, determined from (3.24) and (5.3). Note that |σ[2] − σ | < 0.002 |Λ|
when |m| > 2 mb, whilst |σ[2] − σ | < 0.01 |Λ| when |m| > 0.5 mb and |k| > 0.7|Λ|/β .
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Figure 7. (a) Numerically determined intrinsic phase speed c for the inertial instability of
a uniform shear flow on the equatorial β-plane. (b) The theoretical prediction c[2]. In each

panel, c has been non-dimensionalized by Λ2/β . In (b), the thin dashed line marks where
|c − c[2]| = 0.001Λ2/β , whilst the thick dashed line marks where |c − c[2]| = 0.1Λ2/β .

The prediction σ[1] is somewhat less accurate. Both predictions can be significantly
improved as k → 0 by using expressions for σ 2 rather than σ , since in that limit there
exists an exact expression for σ 2.

The numerically determined intrinsic phase speed c is shown in figure 7(a). As
|m| → ∞, c → 0 for all |k|. The largest absolute values occur near |m| = mb and k = 0,
where c falls to −1.6Λ2/β . The theoretical prediction c[2], determined from (5.4), is
shown in figure 7(b). We can see that c[2] → c as |m| → ∞, so that c ∼ |m|−2 in this
limit. The expression c[2] is accurate to within 0.1Λ2/β for most of the values shown.
Relatively large errors are expected when |m| ∼ 4Nβ/Λ2, since we have only derived
the leading-order term of the series for c.

The latitudinal structure Ṽ (y) of the n = 0 eigenmode at k = 0.5β/Λ is shown
in figure 8, where Λ > 0. At both |m| = 8mb and |m| = mb, Ṽ (y) takes the
form of oscillations modulated by a Gaussian envelope. This is consistent with the
theoretical predictions, the leading-order terms of which can be derived from (3.19a).
Renormalizing so that Ṽ = 1 at y = y, we obtain:

Ṽ ∼ exp (il (y − Λ/2β)) exp

(
− (y − Λ/2β)2

2L2
k

)
, l = ∓Λ2k|m|

2Nβ
, (5.5)

with the minus sign corresponding to the unstable eigenmode. Thus, the cross-
stream structure is characterized by decay on a length scale Lk , given by (5.2), and by
oscillations with wavenumber l. At fixed |m|, as |k| increases, the width of the envelope
increases and the wavelength of the oscillations decreases, so the oscillations become
more apparent. At fixed k, as |m| decreases, the width of the envelope increases as
|m|−1/2 whilst the wavelength of the oscillations increases as |m|−1, so the oscillations
become less apparent. Thus, at |m| = mb in figure 8(b), Re(Ṽ ) looks rather like a
Gaussian, and Im(Ṽ ) is relatively small.

The theoretical prediction (5.5), along with higher-order predictions derived from
(A10) and (A11), are also shown in figure 8. At |m| = 8mb and k = 0.5β/Λ, Ṽ[0]

offers an adequate approximation, whilst differences between Ṽ and Ṽ[2] are barely

perceptible, with |Ṽ − Ṽ[2]| < 0.013. At |m| = mb and k = 0.5β/Λ, Ṽ[0] is no longer

a good approximation, but Ṽ[2] is still qualitatively and quantitatively correct, with

|Ṽ − Ṽ[2]| < 0.2. The accuracy of Ṽ[0], Ṽ[1] and Ṽ[2] over a wide parameter regime is
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Figure 8. The latitudinal structure at k = 0.5 β/Λ and (a) |m| = 8mb , (b) |m| = mb .
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Figure 9. Accuracy of the predicted latitudinal structure: (a) max |Ṽ − Ṽ[0]|, (b)

max |Ṽ − Ṽ[1]|, (c) max |Ṽ − Ṽ[2]|. The eigenmodes are normalized so that Ṽ =1 at y = Λ/2β .

shown in figure 9. The accuracy of each typically increases as k decreases and |m|
increases. This is to be expected, since from (5.2) the latitudinal scale of the eigenmodes
Lk becomes smaller in these limits, so that the scale separation underlying the analysis
becomes greater. The scale separation is always lost as |kΛ/β| → 1 or as |m| → 0,
since then Lk → ∞. As shown in figure 9(c), Ṽ[2] is a useful approximation for a wide
range of k and |m|.

5.3. Applications to the equatorial stratosphere and mesosphere

The upper stratosphere and lower mesosphere have a persistent cross-equatorial
shear near-solstice, which could be crudely modelled as a zonally symmetric flow with
uniform shear. The structure of the zonally symmetric instability is well known
(e.g. Dunkerton 1981), whilst the horizontal structure of zonally non-symmetric
disturbances has been illustrated by Dunkerton (1983, 1993), Winter & Schmitz
(1998), and Taniguchi & Ishiwatari (2006). However, since observations of inertial
instability in the equatorial stratosphere are perhaps most compelling when shown as
meridional slices of temperature perturbations (e.g. figure 5b of Hayashi et al. 1998),
and since temperature perturbations have the same structure as the vertical gradient
of the geopotential perturbation φ̃, we examine the meridional structure of φ̃.
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Figure 10. Numerically determined φ̃, at fixed x. Parameters are (a) k = 0.5 β/Λ, |m| = 8mb;
(b) k = 0.5 β/Λ, |m| = mb . The vertical dashed lines denote the edge of the unstable region.

Figure 10 shows numerically determined φ̃ at k = 0.5β/Λ, corresponding to the
two cases shown in figure 8. Figure 10(a), at |m| = 8mb, shows the form of φ̃

at relatively large vertical wavenumber. This is in marked contrast to the classical
picture of inertial instability based on zonally symmetric theory, i.e. opposite-signed
temperature perturbations approximately equidistant from the centre of the unstable
region. However, structures with such large vertical wavenumbers may not be realized
in the atmosphere, because the vertical scale of the instability is likely to be limited
by diffusion (Dunkerton 1981) or a nonlinear mechanism (Griffiths 2003b). Then,
zonally asymmetric inertial instabilities of moderate vertical scales are expected to
be the dominant motions, as noted by Dunkerton (1983) and Stevens & Ciesielski
(1986). Figure 10(b), at |m| = mb, shows such a case. This is remarkably similar to
the classical picture of inertial instability based on zonally symmetric theory. An
important difference is the larger amplitude of the equatorial cells, which is perhaps
suggestive of the Kelvin-wave instability which the inertial instability is set to merge
with at yet smaller |m| (Boyd & Christidis 1982). It is not clear whether this solution
should be described as an inertial instability, or whether another interpretation might
be more appropriate (Taniguchi & Ishiwatari 2006).

The non-symmetric solutions have a propagating character, since Re(ω) �= 0.
Taking β = 2.3 × 10−11m−1s−1 and Λ = 4 × 10−5 s−1 (see § 2d of Griffiths 2003b),
the requirement k = j/re (where j is an integer and re is the Earth’s radius) implies
|kΛ/β| = 0.27j . From figure 7(a), |c| ∼ 0.2Λ2/β ≈ 14 m s−1 for such eigenmodes,
with both positive and negative phase speeds possible. The corresponding values
of Re(ω) imply a negligible vertical phase speed. However, since c ∼ |m|−2 for this
uniform shear flow, whereas we expect c ∼ |m|−1 for flows with non-uniform shear, it
is possible that c will be larger for more realistic flows.

6. Discussion
The Rayleigh–Schrödinger perturbation analysis employed here is the natural choice

for studying inertial instabilities. The underlying reason is that, when the along-stream
wavenumber k = 0 and as the absolute value of the vertical wavenumber |m| → ∞,
inertial instabilities are highly localized on a length scale ∝ |m|−1/2 around the
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streamline where fQ is minimized. This is an important limit, since it corresponds
to the strongest linear instabilities when k = 0. It also has a clear dynamical
interpretation, the motions becoming near-inertial as |m| → ∞, with horizontal
pressure gradients playing a negligible role. As |m| is reduced, the inertial balance
is broken by a stabilizing cross-stream pressure gradient associated with buoyancy,
and for |m| < mb, which takes the scaling (2.15), the solutions become inertia–gravity
waves. However, for |m| > mb the traditional labelling of an inertial instability is
justified because the instability originates in the near-inertial limit |m| → ∞. Although
not explicitly illustrated here, the cross-stream localization of the solutions renders
the lateral boundary conditions rather unimportant, so that the limiting solution is
identical for laterally bounded, unbounded, or periodic domains.

These ideas are well established. However, here it has been shown that a similar
approach can be applied to the instability analysis with non-zero k, for an arbitrary
parallel shear flow. Our results are thus similar in nature to those of Billant & Gallaire
(2005), who applied a complex WKB method to the non-axisymmetric instability of
flows with circular symmetry. In § 3.1, the general structure of the solutions was
explicitly illustrated at small k and large |m|. In addition to the buoyancy-induced
stabilization as |m| decreases, there is a stabilization as |k| increases from zero,
again associated with growth of the cross-stream pressure gradient. For larger |k|,
these localized solutions may cease to exist, with detailed examples showing that
the analysis holds only when 0 � |k| < kc, with kc taking the scaling (3.10). For
sufficiently large |m| and 0 � |k| < kc, it is justifiable to describe these localized
solutions as inertial instabilities, or non-symmetric inertial instabilities, since they
originate in the near-inertial limit k → 0 and |m| → ∞. There is a clear analogy here
with the use of ‘inertial instability’ at k = 0 when |m| > mb. This is also consistent
with terminology used by Dunkerton (1983), and Stevens & Ciesielski (1986), for
instance. However, when k �= 0, as |m| is reduced the growth rate typically remains
positive, and as |m| → 0 the solutions are clearly identifiable as something other
than an inertial instability. Even though these solutions are smoothly connected to
those obtained in the near-inertial limit, their description as inertial instabilities will
generally be inappropriate for sufficiently small |m|. In our detailed examples, the
inertial instability merges into a barotropic Kelvin–Helmholtz instability (see § 4) or a
Kelvin-wave instability (see § 5) at small |m|. A similiar connection was noted by Sipp
et al. (2005) for the instability of a vortex with radial stratification, where the inertial
instability merges into an analogue of the Rayleigh–Taylor instability at small |m|.

Although the analysis only describes a certain discrete class of normal-mode
solutions, these are of physical interest. For instance, on the equatorial β-plane,
when k = 0 the discrete eigenmodes typically form a complete set, so that the
dynamics of the linear initial-value problem are captured by the analysis, at least
for disturbances of high vertical wavenumber. On the f -plane, typically the discrete
spectrum is finite, so that the analysis only describes a finite number of eigenmodes.
However, if the minimum value of fQ is negative but with fQ positive and finite
as |y| → ∞, corresponding to a region (or regions) prone to inertial instability
within an otherwise stable flow, then the unstable solutions are necessarily part of
the discrete spectrum (since ω2 < 0 and fQ > 0 as |y| → ∞ imply exponentially
decaying solutions, from (2.1)). Thus, the asymptotic analysis captures the normal
mode instability. When k �= 0, the situation is more complicated, as other branches
of the dispersion relation not captured by the analysis also describe instabilities.
However, the inertial instabilities obtained as |m| → ∞ are typically strong, when
measured relative to the maximum possible normal-mode growth rate (1.6).
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A major benefit of the analysis is its simplicity. The first two terms of asymptotic
expansions for the frequency ω, and the corresponding leading-order cross-stream
structure, can be almost trivially determined. Of particular interest is the accuracy of
the predictions for ω(k, m). For the most unstable solutions, which are obtained as
|m| → ∞, ω is approximated well, since in that limit the cross-stream scale separation
underlying the analysis is valid. Both the first- and second-order expressions for ω

remain useful as |m| decreases, typically even when |m| ≈ mb, which is outside the
range of validity which might otherwise be expected. Clark & Haynes (1996) have
shown one way in which such analytical expressions for ω(k, m) might be applied, in
their study of the absolute instability of a flow with weak along-stream variations.

An immediate generalization of these ideas, discussed briefly in § 2.1, is to flows for
which fQ > 0 everywhere, in which case the analysis describes trapped near-inertial
waves as k → 0 and |m| → ∞, and their extension to inertia–gravity waves at finite
|m|. When k = 0, there are connections here to studies of trapped near-inertial waves
in oceanic vortices (e.g. Kunze 1985; Llewellyn Smith 1999), and to the work of
Plougonven & Zeitlin (2005) on the role of trapped modes in geostropic adjustment.
When k �= 0, there are connections to studies of three-dimensional near-inertial waves
(e.g. Kloosterziel & Müller 1995; Young & Ben Jelloul 1997).

6.1. Extensions to other models

We have developed solutions for an inviscid hydrostatic flow with constant buoyancy
frequency, under the traditional approximation. However, it is worth noting the effect
of relaxing each of these assumptions.

(i) Although viscosity damps all instabilities in the limit |m| → ∞, a weak viscosity
ν can be added to the formulation. The spatial structure of the solutions remains
unchanged, but the growth rate is maximized at finite |m| ∼ ν−1/3 (Griffiths 2008).

(ii) Relatively minor modifications to the theory should permit treatment of
background flows where U and N vary with y and z, since the z-variations will
be small compared with those of the perturbations in the limit |m| → ∞. A WKB
formulation for this kind of configuration was given by Griffiths (2000, chap. 3).

(iii) Billant & Gallaire (2005) have demonstrated that inertial instabilities of flows
with circular symmetry are insensitive to stratification at large vertical wavenumber.
In the present context, the importance of stratification can be assessed by considering
the normal modes of a non-hydrostatic Boussinesq flow. Then the time evolution of
pressure is given by(

∂

∂t
+ U (y)

∂

∂x

)
φ̃ +

N2 − (ω − kU )2

m2

(
∂u

∂x
+

∂v

∂y

)
= 0.

Comparing with (1.1c), we see that non-hydrostatic results can be obtained from the
present theory by replacing N2 by N2 − (ω − kU )2. Thus, in the asymptotics of §§ 2
and 3, we replace N2 by N2 − ω2

0 to leading order. In particular, (3.4) becomes

ω ∼ kU ±
(
fQ

)1/2

(
1 +

2n + 1

2|m|(fQ)

(
N2 − fQ

)1/2
(

(fQ)′′

2

)1/2

− k2U ′2

(fQ)′′
+ . . .

)
,

as k → 0 and |m| → ∞. Thus, even taking the extreme limit N = 0, when fQ < 0
the inertial instabilities retain the same character as in the hydrostatic case, with the
largest growth rates obtained as |m| → ∞ and k → 0. Stratification does influence
the degree of stabilization as |m| decreases, but it does not influence the stabilization

as |k| increases from zero. However, if fQ > N2 > 0, i.e. for a weakly stratified
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and inertially stable flow, then the results must be modified since (2.4) implies that
localized solutions only exist when (fQ)′′ < 0.

(iv) Although applying the hydrostatic approximation has a benign influence upon
inertial instabilities, the neglect of the horizontal component of the Coriolis parameter
in the formulation should be addressed. This leads to an important modification of
the theory as |m| → ∞, which will be discussed elsewhere.

Appendix A. Higher-order corrections
We start by noting some properties of the Hermite functions Hn(Y ):

dHn

dY
= nHn−1 − 1

2
Hn+1, 2YHn = 2nHn−1 + Hn+1, (A1a,b)

which follow from (2.8). Repeatedly applying (A1b) implies that

4Y 2Hn = 4n(n − 1)Hn−2 + 2 (2n + 1) Hn + Hn+2, (A1c)

8Y 3Hn = 8n(n − 1)(n − 2)Hn−3 + 12n2Hn−1 + 6(n + 1)Hn+1 + Hn+3, (A1d )

16Y 4Hn = 16n(n − 1)(n − 2)(n − 3)Hn−4 + 16n(n − 1)(2n − 1)Hn−2

+12(2n2 + 2n + 1)Hn + 4(2n + 3)Hn+2 + Hn+4. (A1e)

We also introduce a Hermite operator

Ln =
d2

dY 2
+ 2n + 1 − Y 2 ⇒ LnHm(Y ) = 2(n − m)Hm(Y ). (A2a,b)

A.1. Symmetric solutions

We calculate the next-order corrections to (2.17), subject to the normalization
condition ∫ ∞

−∞
Ṽ Hn dY =

∫ ∞

−∞
H 2

n dY. (A3)

Substituting (2.16a) into (2.6), we obtain

LnṼ =

(
L(fQ)′′′Y 3

6a2N2
+

L2(fQ)′′′′Y 4

24a2N2
+ . . . − a2L2ω2

2

N2
− a4L4ω2

3

N2
− . . .

)
Ṽ , (A4)

using (2.17) and (A2a). Substituting from (2.16b), the leading-order terms of (A4) are
satisfied by Ṽ0 = Hn(Y ), applying (A3). The O(L) terms of (A4) then give

LnṼ1 =
(fQ)′′′

6a3N2
Y 3Hn.

Thus, using (A1d ), (A2b) and (A3) we can show that

Ṽ1 =
(fQ)′′′

6a3N2

(
1
6
n(n − 1)(n − 2)Hn−3 + 3

4
n2Hn−1 − 3

8
(n + 1)Hn+1 − 1

48
Hn+3

)
. (A5)

The O(L2) terms of (A4) then give

LnṼ2 =
(fQ)′′′

6a3N2
Y 3Ṽ1 +

(fQ)′′′′

24a4N2
Y 4Hn(Y ) − ω2

2

N2
Hn(Y ).

Multiplying by Hn and integrating with respect to Y from −∞ to ∞, the left-hand
side vanishes, and we find that the right-hand side cannot project onto Hn. Thus,
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using (A1d,e) and (A5), and substituting for a from (2.5b), we can extract a solvability
condition:

ω2
2 =

N4

8(fQ)′′

(
(2n2 + 2n + 1)

(fQ)′′′′

(fQ)′′
− (30n2 + 30n + 11)

9

(
(fQ)′′′

(fQ)′′

)2
)

. (A6)

A.2. Non-symmetric solutions

We calculate the higher-order behaviour of Ṽ (y) and ω for the n = 0 eigenmode,
with k �= 0. We return to (3.12), but include terms up to O(L4

k). We thus must extend
(3.15), noting that the O(1) and O(Lk) terms vanish using (3.16a,b), and that the
O(L2

k) terms can be simplified using (3.17) and (3.19b). We obtain

ω̂2 − fQ

N2
= (akLk)

2
(
2n + 1 − Y 2

)
− (akLk)

3

(
γ3Y

3 +
(2n + 1)kU ′

kY

akω0

)
− (akLk)

4

×
(

γ4Y
4 +

(2n + 1)kU ′′
k Y 2

2ω0a
2
k

− 2ω0ω2

N2
− (2n + 1)2N2

4ω2
0

)
+ O(L5

k), (A7)

where the dimensionless coefficients γ3 and γ4 are given by

γ3 =
1

N2a3
k

(
1
6
(fQ)′′′

k + 1
3
kω0U

′′′
k − k2U ′U ′′

k

)
, (A8a)

γ4 =
1

N2a4
k

(
1
24

(fQ)′′′′
k + 1

12
kω0U

′′′′
k − 1

3
k2U ′U ′′′

k − 1
4
k2U ′′2

k

)
. (A8b)

Substituting into (3.12), the equation for the n = 0 eigenmode becomes

L0Ṽ = akLk

[
γ3Y

3 +
kU ′

k

akω0

(
Y − 2

d

dY

)]
Ṽ − 2(akLk)

2

[
k2U ′2

k

ω2
0a

2
k

+
kU ′′

k

ω0a
2
k

]
Y

dṼ

dY

+ (akLk)
2

[
γ4Y

4 +
kU ′′

k Y 2

2ω0a
2
k

− 2ω0ω2

N2
− N2

4ω2
0

+
1

a2
k

(
k2 +

kQ′
k

ω0

+
2k2QU ′

k

ω2
0

)]
Ṽ

+ O(L3
k). (A9)

We choose to apply (A3), so that the leading-order terms of (A9) yield Ṽ0 =
H0(Y ) = exp(−Y 2/2). Expanding Ṽ according to (3.14), the O(Lk) terms of (A9) then
give

L0Ṽ1 =

(
γ3Y

3 +
3kYU ′

k

akω0

)
H0(Y ).

Thus, using (A1b,d ), (A2b) and (A3), we can show that

Ṽ1 = − 3kU ′
k

4akω0

H1(Y ) − γ3

48
[18H1(Y ) + H3(Y )] . (A10)

The O(L2
k) terms of (A9) then give

L0Ṽ2 =

[
γ3Y

3+
kU ′

k

akω0

(
Y −2

d

dY

)]
Ṽ1 +

2

a2
k

(
k2U ′2

k

ω2
0

+
kU ′′

k

ω0

)
Y 2H0(Y )

+

[
γ4Y

4+
kU ′′

k Y 2

2ω0a
2
k

− 2ω0ω2

N2
− N2

4ω2
0

+
1

a2
k

(
k2+

kQ′
k

ω0

+
2k2QU ′

k

ω2
0

)]
H0(Y ). (A11)
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Since the right-hand side cannot project onto H0, using (A1a–e) we find that

ω2 =
N2

2ω0

(
1

a2
k

[
k2 +

kQ′
k

ω0

+
5kU ′′

k

4ω0

+
2k2QU ′

k

ω2
0

+
7k2U ′2

k

4ω2
0

]

+
3γ4

4
− 11γ 2

3

16
− 3kU ′

kγ3

4akω0

− N2

4ω2
0

)
, (A12)

where γ3 and γ4 are given by (A8a ,b).
For the flow of § 4, we can show using (4.1) and (4.2) that

γ3 =
2Nkλω0

f |f |
(Ro−1 − k2λ2)1/2

|1 − k2λ2| , γ4 =
N2

3f 2Ro

(
(9 − 7Ro) k2λ2 − 2

)
(
1 − k2λ2

)2
,

so that (A12) gives

ω2 =
N4

8ω0f 2

(
Ro − 2 + 9Roλ2k2 − 8Ro2λ4k4

Ro(1 − Ro)(1 − λ2k2)

)
. (A13)

For the flow of § 5, it is easy to see that γ3 = γ4 = 0, so that (5.1), (5.2) and (A12)
give

ω2 = ∓ iN4

Λ3
(
1 − k2Λ2/β2

)1/2

(
1 − 2k2Λ2

β2

)2

− 2kN4

βΛ2

(
1 − 2k2Λ2

β2

)
. (A14)

Appendix B. Numerical methods
Eigenvalue problems on −∞ < y < ∞ are solved by mapping to a finite numerical

domain −1 � η � 1, via

η =
y − yc√

(y − yc)2 + λ2
c

, (B1)

where yc and λc are free parameters. We then discretize on a uniform grid ηj =
−1 + (2j − 1)/2J , j = 1, 2, . . . , J , and apply the periodic pseudospectral method
with differentiation matrices derived as in Fornberg (1998, pp. 31–34). The boundary
conditions (1.5) need not be imposed explicitly, as described by Boyd (2000, § 17.8).

When k = 0, we apply this approach to (2.1), which then reduces to a J × J matrix
eigenvalue problem for ω2. We solve for the smallest value of ω2 at J = 32, using an
iterative solver, and double J until ω2 changes by less than a specified tolerance. The
results of § 2.5 were obtained with yc = y and λc = 2L, with ω2 calculated to within
10−6 × Λ2/4, which typically required J = 128.

When k �= 0, we apply a corresponding approach by writing each of Ũ (y), Ṽ (y)
and Φ̃(y) as a J -component vector, so that (1.1a–c) reduces to a 3 J × 3 J matrix
eigenvalue problem for ω. Rather than simply solve for the most unstable eigenmode,
we instead seek the extension to finite k and |m| of the inertial instability obtained as
k → 0 and |m| → ∞. To do this, we first solve for the eigenvalue with largest Im(ω)
at k = 0 and large |m|, which corresponds to the n = 0 eigenmode. We then solve for
ω at k + k, using an iterative eigenvalue solver with initial guess ω(k), and repeat to
track ω for this eigenmode up to some maximum k. Then, at each k, we solve for ω

at m − m, initializing with ω(k, m), and repeat to track ω down to some minimum
m. Provided k and m are sufficiently small, we do not jump between different
branches of ω(k, m).
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For the results of § 4, we used (B1) with yc = 0 and λc = min (4L, 4λ). For each
solution, J was doubled until ω changed by less than 2 × 10−4|f |, although typically,
convergence occurred to a much higher precision after just the first iteration from
J = 32 to J = 64. An exception occurred as λ|k| → Ro−1/2 = 2−1/2, when the growth
rate tends to zero and the solution becomes highly oscillatory, requiring J = 1024 at
|m| = 10(N/|f |)λ−1 and k = 0.69λ−1. Clearly, some kind of transition in the solution is
being approached, consistent with the prediction of (4.3) for the existence of localized
solutions. Solutions were not found for |k| > 0.69λ−1.

For the results of § 5, we used (B1) with yc = Λ/2β , λc = 4Lk , and calculated
ω to within an accuracy of 10−4 × Λ. For most parameters this required J = 64,
but for some points near k = 0.95Λ/β and |m| = 32Nβ/Λ2, convergence was
reached only at J = 256. Near to |m| = mb for small k, considerable care must
be taken to avoid jumping between different branches of the dispersion relation,
owing to the merging of roots discussed by Boyd & Christidis (1982). At the lowest
value of k used (k = 0.05β/Λ), increments of m = 0.2Nβ/Λ2 were used for
2Nβ/Λ2 < |m| < 4Nβ/Λ2.

REFERENCES

Andrews, D. G., Holton, J. R. & Leovy, C. B. 1987 Middle Atmosphere Dynamics. Academic.

Bayly, B. J. 1988 Three dimensional centrifugal-type instabilities in inviscid two-dimensional flows.
Phys. Fluids 31, 56–64.

Bender, C. M. & Bettencourt, L. M. A. 1996 Multiple-scale analysis of quantum systems. Phys.
Rev. D 54, 7710–7723.

Bender, C. M. & Orszag, S. A. 1978 Advanced Mathematical Methods for Scientists and Engineers.
McGraw-Hill.

Billant, P. & Gallaire, F. 2005 Generalized Rayleigh criterion for non-axisymmetric centrifugal
instabilities. J. Fluid Mech. 542, 365–379.

Boyd, J. P. 1978 The effects of latitudinal shear on equatorial waves. Part I: Theory and methods.
J. Atmos. Sci. 35, 2236–2258.

Boyd, J. P. 2000 Chebyshev and Fourier Spectral Methods. Dover.

Boyd, J. P. & Christidis, Z. D. 1982 Low wavenumber instability on the equatorial beta-plane.
Geophys. Res. Lett. 9, 769–772.

Chomaz, J., Huerre, P. & Redekopp, L. G. 1991 A frequency selection criterion in spatially
developing flows. Stud. Appl. Maths. 84, 119–144.

Clark, P. D. & Haynes, P. H. 1996 Inertial instability on an asymmetric low-latitude flow. Q. J. R.
Met. Soc. 122, 151–182.

Dunkerton, T. J. 1981 On the inertial stability of the equatorial middle atmosphere. J. Atmos. Sci.
38, 2354–2364.

Dunkerton, T. J. 1983 A nonsymmetric equatorial inertial instability. J. Atmos. Sci. 40, 807–813.

Dunkerton, T. J. 1993 Inertial instability of nonparallel flow on an equatorial beta plane. J. Atmos.
Sci. 50, 2744–2758.

Fornberg, B. 1998 A Practical Guide to Pseudospectral Methods. Cambridge University Press.

Griffiths, S. D. 2000 Inertial instability in the equatorial stratosphere. PhD thesis, University of
Cambridge.

Griffiths, S. D. 2003a The nonlinear evolution of zonally symmetric equatorial inertial instability.
J. Fluid Mech. 474, 245–273.

Griffiths, S. D. 2003b Nonlinear vertical scale selection in equatorial inertial instability. J. Atmos.
Sci. 60, 977–990.

Griffiths, S. D. 2008 Weakly diffusive vertical scale selection for the inertial instability of an
arbitrary shear flow. J. Fluid Mech. 594, 265–268.

Hayashi, H., Shiotani, M. & Gille, J. C. 1998 Vertically stacked temperature disturbances near the
equatorial stratopause as seen in cryogenic limb array etalon spectrometer data. J. Geophys.
Res. 103, 19469–19483.



Limiting form of inertial instability in geophysical flows 143

Holton, J. R. 1992 An Introduction to Dynamic Meteorology, 3rd edn. Academic.

Killworth, P. D. 1980 Barotropic and baroclinic instability in rotating stratified fluids. Dyn. Atmos.
Oceans 4, 143–184.

Kloosterziel, R. C. & Müller, P. 1995 Evolution of near-inertial waves. J. Fluid Mech. 301,
269–294.

Knox, J. A. 2003 Inertial instability. In Encyclopedia of Atmospheric Sciences (ed. J. R. Holton, J.
A. Curry & J. A. Pyle) pp. 1004–1013. Academic.

Kunze, E. 1985 Near-inertial wave propagation in geostrophic shear. J. Phys. Oceanogr. 15, 544–565.

Leblanc, S. & Cambon, C. 1997 On the three-dimensional instabilities of plane flows subjected to
Coriolis force. Phys. Fluids 9, 1307–1316.

Llewellyn Smith, S. G. 1999 Near-inertial oscillations of a barotropic vortex: trapped modes and
time evolution. J. Phys. Oceanogr. 29, 747–761.

Messiah, A. 2000 Quantum Mechanics. Dover.

Michalke, A. 1964 On the inviscid instability of the hyperbolic-tangent velocity profile. J. Fluid
Mech. 19, 543–556.

Natarov, A. & Boyd, J. P. 2001 Beyond-all-orders instability in the equatorial Kelvin wave. Dyn.
Atmos. Oceans 33, 191–200.

d’Orgeville, M., Hua, B. L., Schopp, R. & Bunge, L. 2004 Extended deep equatorial layering as
a possible imprint of inertial instability. Geophys. Res. Lett. 31, L22303.

Plougonven, R. & Zeitlin, V. 2005 Lagrangian approach to geostrophic adjustment of frontal
anomalies in a stratified fluid. Geophys. Astrophys. Fluid Dyn. 99, 101–135.

Potylitsin, P. G. & Peltier, W. R. 1998 Stratification effects on the stability of columnar vortices
on the f-plane. J. Fluid Mech. 335, 45–79.

Richards, K. J. & Edwards, N. R. 2003 Lateral mixing in the equatorial Pacific: the importance
of inertial instability. Geophys. Res. Lett. 30, 1888.

Ripa, P. 1983 General stability conditions for zonal flows in a one-layer model on the β-plane or
the sphere. J. Fluid Mech. 126, 463–489.

Salmon, R. 1998 Lectures on Geophysical Fluid Dynamics. Oxford University Press.

Sergeev, A. V. & Goodson, D. Z. 1998 Summation of asymptotic expansions of multiple-valued
functions using algebraic approximants: application to anharmonic oscillators. J. Phys. A 31,
4301–4317.

Shen, C. Y. & Evans, T. E. 2002 Inertial instability and sea spirals. Geophys. Res. Lett. 29, 2124.

Sipp, D. & Jacquin, L. 2000 Three-dimensional centrifugal-type instabilities of two-dimensional
flows in rotating systems. Phys. Fluids 12, 1740–1748.

Sipp, D., Fabre, D., Michelin, S. & Jacquin, L. 2005 Stability of a vortex with a heavy core. J.
Fluid Mech. 526, 67–76.

Stevens, D. E. 1983 On symmetric stability and instability of zonal mean flows near the equator. J.
Atmos. Sci. 40, 882–893.

Stevens, D. E. & Ciesielski, P. E. 1986 Inertial instability of horizontally sheared flow away from
the equator. J. Atmos. Sci. 43, 2845–2856.

Taniguchi, H. & Ishiwatari, M. 2006 Physical interpretation of unstable modes of a linear shear
flow in shallow water on an equatorial beta-plane. J. Fluid Mech. 567, 1–26.

Toloza, J. H. 2001 Exponentially accurate error estimates of quasiclassical eigenvalues. J. Phys. A
34, 1203–1218.

Winter, T. & Schmitz, G. 1998 On divergent barotropic and inertial instability in zonal-mean flow
profiles. J. Atmos. Sci. 55, 758–776.

Yavneh, I., McWilliams, J. C. & Molemaker, M. J. 2001 Non-axisymmetric instability of
centrifugally stable stratified Taylor–Couette flow. J. Fluid Mech. 448, 1–21.

Young, W. R. & Ben Jelloul, M. 1997 Propagation of near-inertial oscillations through a
geostrophic flow. J. Mar. Res. 55, 735–766.




